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The production of spoken language entails encoding thoughts into 
words and words into sequences of sounds1. Listeners must analyze 
these sounds to derive the speakers’ intended meanings. One compu-
tational challenge of this task is that the mapping between words and 
sounds is not one to one: different speakers produce different sounds 
when expressing the same utterance. As a result, there is reason to 
think that linguistic analysis cannot proceed directly from the sound 
waveform itself, but rather might be preceded by a stage of acoustic  
analysis that maps patterns of sound energy onto intermediate,  
invariant representations of features, phonemes or syllables2. Here we 
identify a locus of speech-specific acoustic analysis that is a candidate 
precursor to linguistic processing.

Although studies of speech perception have generally highlighted 
neural substrates in the superior temporal lobes3–8, much about the 
auditory analysis of speech remains poorly understood. In particular, 
prior work has generally not addressed the existence and nature of 
auditory mechanisms for speech analysis per se (that is, for analyzing 
acoustic rather than linguistic structure). One influential approach has 
been to manipulate speech in ways that affect its intelligibility, typically 
changing both acoustic and linguistic content3,9–11 and leaving open 
the question of whether acoustic and linguistic processing are distinct 
in cortex. Other studies have targeted speech-relevant acoustic process-
ing using synthetic non-speech stimuli12–16, leaving open whether the 
implicated regions and mechanisms are speech specific.

Our goal was to isolate the auditory analysis of speech, particularly 
its temporal attributes, by manipulating foreign speech that had no 
lexical-semantic or syntactic content for our listeners. The premise of 
our approach is that one might expect neurons underpinning speech 
analysis to be tuned to the particular structures that occur in natural 
speech, such that they would respond more to sound signals that have 

naturalistic speech structure than to those in which this naturalistic 
structure is disrupted. Notably, speech is richly structured in time, 
with systematic organization at multiple timescales1,17,18. Vowels and 
consonants can be distinguished by spectral changes over tens of  
milliseconds, syllables by sequences of phonemes over a few hundred 
milliseconds, and the intonational contours of phrases and sentences 
by pitch variation over hundreds to thousands of milliseconds. We 
manipulated acoustic structure on particular timescales by dividing  
a natural sound into segments and reordering them in a manner  
subject only to local constraints (Fig. 1a and Online Methods). We call 
such stimuli ‘sound quilts’. The synthesis methodology was inspired 
by methods in image processing that synthesize images by ‘stitching 
together’ patches of a source image19. Quilt segments are ordered and 
appended such that segment-to-segment changes resemble those in 
the source signal, but are otherwise unconstrained. The structure of a 
quilted signal is therefore similar to that of the source signal within a 
segment and at a segment’s border, but differs from the source at larger 
scales for source signals that contain large-scale dependencies.

We hypothesized that regions subserving any putative speech- 
specific analysis would exhibit an increasing response to speech 
quilts as the segment length was increased, as this manipulation 
increases the temporal extent over which the signal contains natural-
istic speech structure. It also seemed plausible that responses should 
be limited by the analysis timescale of the part of the auditory system 
under consideration: if two different segment lengths both exceed 
the temporal integration window of a region’s characteristic neuronal 
receptive fields, the response to quilts composed of the two segment 
lengths should be similar, as they will appear to be similarly natural  
from the perspective of the temporal receptive field. Responses  
to quilts with different segment lengths were therefore intended to 
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The cortical analysis of speech-specific temporal 
structure revealed by responses to sound quilts
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Speech contains temporal structure that the brain must analyze to enable linguistic processing. To investigate the neural basis 
of this analysis, we used sound quilts, stimuli constructed by shuffling segments of a natural sound, approximately preserving 
its properties on short timescales while disrupting them on longer scales. We generated quilts from foreign speech to eliminate 
language cues and manipulated the extent of natural acoustic structure by varying the segment length. Using functional 
magnetic resonance imaging, we identified bilateral regions of the superior temporal sulcus (STS) whose responses varied with 
segment length. This effect was absent in primary auditory cortex and did not occur for quilts made from other natural sounds 
or acoustically matched synthetic sounds, suggesting tuning to speech-specific spectrotemporal structure. When examined 
parametrically, the STS response increased with segment length up to ~500 ms. Our results identify a locus of speech analysis  
in human auditory cortex that is distinct from lexical, semantic or syntactic processes.
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both identify the location of potentially speech-specific analysis 
mechanisms and to help characterize the timescale of their analysis.  
To distinguish the analysis of speech acoustics from responses  
that might be driven by lexical, syntactic, or semantic structure, 
we generated quilts from speech in a language (German) that was 
foreign to our English-speaking participants but that has consider-
able phonological overlap with English, and would therefore engage 
speech analysis mechanisms that normally process English.

Our approach is conceptually similar to a study that used image 
scrambling to probe neuronal tuning for structure at different 
spatial scales in the visual system20, as well as to studies that have 
used scrambling stories to examine the timescale of narrative repre-
sentation21 and variable length word lists to examine linguistic 
processes22. Other studies have scrambled music and speech on  
one particular (long) timescale (for example, see ref. 23). However, 
randomly re-ordering sound or image segments typically introduces  
perceptually salient boundary artifacts; our quilting algorithm  
minimized these by ordering segments to match the degree of  
segment-to-segment change in the original signal and by concatenating  
them to avoid signal discontinuities.

RESULTS
We analyzed the BOLD signal in regions of interest (ROIs) defined 
either functionally or anatomically. As a functional localizer, we 
contrasted the response to quilts composed of long segments with 
the response to quilts composed of short segments (960 and 30 ms, 
respectively, the longest and shortest segments used; Fig. 1b). This 
contrast identifies voxels that respond significantly more to signals 
with naturalistic structure (at a range of timescales up to approxi-
mately 1 s) than signals that lack such structure. Activations for 
this contrast were located bilaterally in the STS (Fig. 2a) and were 
evident in every individual participant that we tested (Fig. 2b). 

We also assessed the reverse contrast, as described below, but this  
did not yield significant activations.

We used this localizer contrast to define a functional ROI (fROI) that 
was sensitive to quilt segment length and then measured the response 
to additional conditions in this independently defined fROI. In our 
initial analyses, we examined fROIs derived from the localizer contrast, 
applied either in individual participants (individual fROI) or across the 
entire group of participants (group fROI). The group fROI, resulting 
from a group second-level random effects analysis of the functional 
localizer contrast, was included in part for comparison with the ana-
tomical ROIs, which were generated from standard probabilistic maps 
of anatomical variation across large groups of participants.

To investigate the timescales over which these regions were sensitive 
to acoustic structure, we parametrically varied the quilt segment length 
from 30 to 960 ms and measured the response in our ROIs. To facilitate 
comparisons across different ROIs (whose overall response often varied 
considerably), we normalized the response to each condition in an ROI 
by its response to the 960-ms localizer condition. The average response 
to speech quilts in both individual and group fROIs increased with seg-
ment length up until 480 ms, at which point it plateaued (main effect of 
segment length in both cases; individual, F(3.01,42.18) = 112.42, P < 0.001, 
η2

p = 0.89; group, F(5,70) = 28.0, P < 0.001, η2
p = 0.67; Fig. 3).

The effect size was slightly larger in the left hemisphere (the main 
effect of hemisphere was marginally not significant: F(1,14) = 4.63, 
P = 0.05), producing significant interactions between the effects 
of segment length and hemisphere (individual, F(1.99,27.82) = 13.43,  
P < 0.001, η2

p = 0.49; group, F(2.85,39.95) = 4.04, P < 0.05, η2
p = 0.22). 

Similarly, the extent of the fROIs in individual subjects showed a trend 
toward left-lateralization: a paired samples t test on the volume of 
the individual fROIs between the two hemispheres yielded a nearly 
significant difference (t(15) = 2.03, P = 0.06). Overall, however, the 
effect was robust in both hemispheres.
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Figure 1 Schematic of the quilting algorithm and example stimuli. 
(a) Quilting algorithm. A source signal is divided into equal-length 
segments (ranging from 30 to 960 ms). Segments are then reordered 
subject only to the constraint that they best match the segment- 
to-segment changes in the cochleogram of the source signal. 
Segment-to-segment changes were calculated from the 30-ms 
sections at the borders of each pair of segments, indicated by the 
dashed lines. In the equation defining the segment-to-segment 
change, C t fn

R ( , ) and C t fn
L ( , ) denote the cochleogram value at time t 

and frequency f of the right and the left border of the nth segment, 
respectively. (b) Example cochleograms of quilts made from 30- and 
960-ms segments, from each of four source signals: German speech, 
a modulation-matched control signal, a co-modulation–matched 
control signal and noise-vocoded German speech. Quilts of long and 
short segments were not markedly different in visual appearance,  
but sound notably distinct in all cases.
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In contrast with the fROIs, responses in Heschl’s Gyrus (HG, inclu-
sive of primary auditory cortex) and planum temporale (PT, part of 
non-primary auditory cortex) showed substantially less variation with 
segment length (as expected, given that these regions were largely 
outside the fROIs; Fig. 2a). HG exhibited a weak main effect of quilt 
segment length (F(5,70) = 2.5, P = 0.04, η2

p = 0.15), but PT did not, 
and no pairwise comparisons (Bonferroni corrected) between any 

pair of segment lengths were significant in either hemisphere of either 
ROI (P > 0.05 in all cases). An ANOVA across all ROIs accordingly 
showed an interaction between the effect of quilt segment length and 
ROI (F(15,210) = 49.17, P < 0.001, η2

p = 0.78).
We also tested for areas that responded more to short-segment 

speech quilts than long-segment speech quilts via the reverse func-
tional localizer contrast [L30 > L960]. Most participants did not 
exhibit any significant activations in the superior temporal gyrus 
(STG) for this contrast, and no voxels in auditory cortex were sig-
nificantly activated at the group level (all P > 0.001, uncorrected; 
Supplementary Fig. 1).

These results suggest some specialization for the processing  
of acoustic structure in speech: regions in STS showed strong  
sensitivity to the temporal extent of natural speech structure  
that was not mirrored in regions that lie earlier in the presumptive cor-
tical processing hierarchy. Because there were no obvious qualitative  
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Figure 2 Extent and location of ROIs. (a) Anatomical (HG and PT, red and blue, respectively) and functional (green) group ROIs displayed on  
coronal cross-sections of our participants’ average structural images (y = −38, −30, −22, −14, −6, 2, 10). The functional group ROI was derived 
from the functional localizer contrast [L960 > L30], P < 0.0001, uncorrected. (b) Renderings on flattened surfaces for the three group ROIs  
from a (top left) and for individual functional ROIs for five participants who were scanned four times (rendered on their flattened structural  
images), P < 0.05, family-wise error (FWE) corrected.
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Figure 3 Responses to German speech quilts as a function of segment 
length, in four ROIs: HG (red), PT (blue), group fROI (green) and 
individual fROIs (black), shown separately for the two hemispheres. Data 
are averaged across 15 unique participants. Error bars denote ±1 s.e.m., 
asterisks denote significant pair-wise comparisons (after Bonferroni 
correction), P < 0.05. Responses were normalized in each ROI to the 
response of the independent functional localizer condition L960.
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differences between the individual and group fROIs, we restricted 
subsequent analyses to the individual fROIs, which best identified  
the locus of our key effect, and to the two anatomical ROIs HG  
and PT, which reveal the response in putatively earlier primary  
and non-primary auditory cortex, respectively.

Tests of speech specificity
Do the responses to speech quilts reflect speech-specific processing? 
To rule out more generic explanations of our results, we measured 
responses to quilts composed of various control stimuli. In each case, 
we presented control quilts made from long (960 ms) and short (30 ms)  
segments, included as additional conditions in sessions in which we 
also measured the parametric response to speech quilts. For ease of 
comparison, the responses to the control conditions are plotted with 
responses to speech quilts of the same segment lengths (using data 
independent of that used to define the fROIs).

Modulation control stimuli
We first sought to test whether the results could be explained by 
responses to basic amplitude modulation characteristics. Quilting pro-
duces stimuli whose long-term power spectra are similar to that of the 
source signal, irrespective of the segment length (Supplementary Fig. 2),  
but the modulation spectra exhibit some variation with segment 
length. For speech, quilts with short segments yielded somewhat 
less power at rates associated with syllable alternation (3–5 Hz) than  
did quilts with longer segments (Fig. 4a). In principle, differences 
in modulation spectra could at least partially account for the lower 

response to short-segment quilts14–16,24,25. To control for these dif-
ferences in modulation, we synthesized stimuli that replicated them. 
Specifically, we used the McDermott and Simoncelli sound texture syn-
thesis algorithm to decompose speech signals using an auditory model, 
measure the marginal moments of the envelopes of each frequency 
channel as well as the power in a set of modulation filters, and then syn-
thesize stimuli with the same marginal moments and modulation power 
distributions26. We then generated quilts from these synthetic signals in 
the same way that we did for speech. These modulation-control quilts 
have modulation spectra (and power spectra; Supplementary Fig. 2) 
that are similar to those of speech quilts, although they are otherwise 
unconstrained and do not resemble speech (Figs. 1b and 4a).

In the fROI, responses to the modulation-control stimuli were weak 
overall, far below even the response to 30-ms speech quilts, and were 
similar for short and long segments (Fig. 4b; main effect of quilt type, 
F(1,8) = 366.71, P < 0.001, η2

p = 0.98; with an interaction between quilt 
type and segment length, F(1,8) = 26.6, P = 0.001, η2

p = 0.77; the effect of 
segment length in the control quilts alone was not significant, P > 0.05).  
In contrast, responses to the control stimuli in HG and PT were com-
parable to those for the speech quilts (there were no main effects or 
interactions for quilt type and segment length in HG or PT, all P > 0.05), 
showing that the larger response to speech quilts in the fROI was not 
present throughout the auditory cortex. These results indicate that the 
response to the speech quilts was not being driven by their within-channel  
modulation spectra, as these were matched in the control stimuli.

As a further test, we examined whether the responses to speech 
quilts might be driven by correlated modulation across frequency 
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Figure 4 Responses to modulation control stimuli. (a) Power in a 
set of simulated modulation filters26 (normalized by the total power 
over all filters) for speech quilts and modulation control quilts. Note 
the differences across segment lengths and the similarity across 
quilt type. (b) Average responses (±s.e.m.) in HG (red), PT (blue) 
and the individual fROI (black) to speech quilts (solid) and control 
quilts (dashed) with segment durations of 30 and 960 ms. Data were 
averaged across the nine participants who were scanned with the 
modulation-control condition set. (c) Cross-channel correlations26 for 
speech, modulation control and co-modulation control quilts (measured 
from 960-ms quilts). (d) Average responses (±s.e.m.) in HG (red), 
PT (blue) and the individual fROI (black) to speech quilts (solid) and 
co-modulation control quilts (dashed) with segment durations of 30 
and 960 ms. Data are averaged across the five participants who were 
scanned with the co-modulation–control condition set.
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channels (co-modulation), a common property of natural sounds that 
our modulation control stimuli lacked (Fig. 4c). We generated an 
additional set of control stimuli in which cross-channel correlations 
(as well as envelope marginal moments and modulation power distri-
butions) were matched to those of speech, using the same statistical 
synthesis procedure26. Quilts made from these stimuli again showed 
a low overall response in the fROIs and, at best, a weak effect of  
segment length (Fig. 4d), producing a main effect of quilt type  
(F(1,4) = 98.09, P = 0.001, η2

p = 0.96) and an interaction between 
quilt type and segment length (F(1,4) = 78.83, P = 0.001, η2

p = 0.95)  
(the effect of segment length was not significant for the control quilts 
by themselves, P > 0.05). The response to these control quilts in the 
anatomical ROIs of HG and PT was again comparable to that for 
speech quilts. There was no effect of quilt type or segment length in HG 
(all P > 0.05), and although the response in PT showed a main effect 
of quilt type (F(1,4) = 14.77, P < 0.05, η2

p = 0.79; all others P > 0.05),  
this was driven by a slightly higher response to the control stimuli. 
Taken together, these two control experiments indicate that generic 
responses to amplitude modulation cannot account for the responses 
to speech quilts.

Environmental sounds
Are the brain regions that are sensitive to the acoustic structure of 
speech also sensitive to the structure of other natural sounds? To 
further address the speech-specificity of our effects, we examined 
responses to quilts made from a set of environmental sounds. The 
sounds encompassed animal vocalizations (dogs barking, bird songs) 
and human actions (footsteps, sawing wood) selected to have struc-
ture over long timescales (Online Methods). We generated quilts 
using the same procedure used for speech.

Quilts made from environmental sounds evoked an overall response 
in the individual fROIs that was much lower than that for any of the 
speech quilts, irrespective of segment length (main effect of quilt type: 
F(1,4) = 72.59, P = 0.001, η2

p = 0.95; Fig. 5). The effect of segment length 
on the fROI response was also much larger for speech quilts than 
for environmental sound quilts, producing an interaction between 
quilt type and segment length (F(1,4) = 9.45, P < 0.05, η2

p = 0.7),  
although a pairwise comparison between the two environmental 
sound quilt control conditions was significant (P < 0.05). In contrast, 

the response in HG showed a weak main effect of segment length 
(F(1,4) = 15.59, P < 0.05, η2

p = 0.8), but no main effect of quilt type 
or interaction between quilt type and segment length. The response 
in PT showed a weak main effect of quilt type (F(1,4) = 8.9, P < 0.05,  
η2

p = 0.69) and a main effect of segment length (F(1,4) = 36.24, P < 0.01,  
η2

p = 0.9), but no interaction, and it is apparent that the main effect of 
quilt type is driven by a larger response to the environmental sound 
quilts. This effect contrasts with the much lower response to the same 
quilts observed in the fROI. These results further support the claim 
that there is functional specialization for speech: the overall fROI 
response to quilts and the effect of segment length were substantially 
weaker for environmental sounds than for speech, and both of these 
differences were not present in other auditory areas.

Noise-vocoded speech
What aspects of speech drive the response to speech quilts? One pos-
sible account is that the responses are driven by prosody, particu-
larly the prosodic pitch variation that occurs in natural speech. Such 
patterns are largely preserved in quilts made from long segments of 
speech, but are severely disrupted in quilts made from short segments. 
To test the importance of pitch variation, we presented quilts made 
from noise-vocoded speech27. We generated noise-vocoded versions 
of each of our source speech recordings by imposing the envelopes 
of ten frequency bands (constructed to be equally spaced along the 
cochlea, covering the audible spectrum) on noise (Fig. 1b). Pitch, 
which relies on fine spectral detail, is eliminated by this procedure, 
but coarse spectral content sufficient for phonetic identification 
remains present. When English speech is noise-vocoded in this way, 
intelligibility remains high27,28.

The fROI response to quilts of noise-vocoded speech was somewhat 
lower than that to normal speech quilts, but showed a comparable 
effect of segment length (main effect of segment size, F(1,4) = 21.97, 
P < 0.01, η2

p = 0.85, without an interaction with quilt type; Fig. 6). 
Although the response to normal speech quilts was stronger than 
that to noise-vocoded speech, producing a main effect of quilt type 
(F(1,4) = 91.55, P = 0.001, η2

p = 0.96), responses to the noise-vocoded  
stimuli were nonetheless much higher than those to the various  
non-speech quilts that we tested (Figs. 4 and 5). Separate repeated-
measures ANOVAs for the response in HG and PT, in contrast, 
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durations of 30 and 960 ms. Data are averaged across the five participants 
who were scanned with the environmental sound control condition set.
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Figure 6 Responses to noise-vocoded speech quilts. Average responses 
(±s.e.m.) in HG (red), PT (blue) and the individual fROI (black) to speech 
quilts (solid) and noise-vocoded quilts (dashed) with segment durations of 
30 and 960 ms. Data are averaged across the five participants who were 
scanned with the noise-vocoded control condition set.
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revealed no main effects or interactions (all P > 0.05). These results 
suggest that the effect of segment size for quilts of normal speech is 
not driven by pitch variation. Rather, other aspects of speech-specific 
temporal structure are evidently important.

Timescale of acoustic analysis
One notable feature of the parametric response to speech quilts  
(Fig. 3) is the response plateau at 480 ms. Although individual par-
ticipants exhibited some variability in their response profile, an elbow 
at 480 ms was visually evident in most cases (Supplementary Fig. 3). 
To quantitatively evaluate the response shape, we fit the parametric 
responses with a piecewise linear function consisting of an initial 
portion of variable slope and a later portion that was flat. The func-
tions were parameterized by the response at 30 ms, the slope of the 
initial portion and the position of the elbow connecting the sloping 
and flat portions. The functions could therefore accommodate elbows 
in different positions as well as different overall levels of response. 
To maximize our power to resolve the location of an elbow point,  
we averaged responses across hemispheres.

To evaluate whether the elbow function better described the para-
metric response than did a linear function, we measured the average 
error of both functions on left-out data. For each participant, we fit both 
function types to the parametric fROI response averaged across the 
other 14 participants and then measured the residual error in the left-
out participant’s data. Such a procedure automatically penalizes model 
complexity, as complexity that is not needed to account for structure in 
the data produces over-fitting. Instead, we found that the elbow model 
produced consistently lower error (mean r.m.s. error on left-out data 
of 0.065 for the elbow model versus 0.069 for the linear model, signifi-
cantly different via a paired t test: t(14) = 3.17, P = 0.0068).

One potential explanation for this response plateau is that the 
regions that we identified integrate sound information at timescales 
up to about half a second. They respond more to quilts composed 
of 480-ms segments than quilts composed of 240-ms segments  
(and to 240 versus 120, 120 versus 60, and 60 versus 30 ms), suggesting 
that they are sensitive to differences in naturalistic acoustic structure 
between these timescales. In contrast, quilts with 960 ms and 480 ms 
segments produce largely equivalent responses. This result is what one 
might expect if temporal receptive fields in these regions extended up 
to about 500 ms in duration.

An alternative explanation is that the response plateau reflects 
the statistics of speech. Specifically, it is conceivable that (foreign) 
speech does not contain substantial acoustic dependencies past half 
a second, such that 480 ms and 960 ms quilts are largely acoustically 
equivalent. As a first step toward addressing this issue, we presented 
listeners with speech quilts of different segment lengths and asked 

them to rate the extent to which they sounded natural. These subjec-
tive ratings showed a pattern that was distinct from that of the fROI 
response: rated naturalness increased monotonically with segment 
length, without an elbow at 480 ms (F(2.73,40.8) = 455.54, P < 0.001,  
η2

p = 0.97, with significant pair-wise comparisons between all  
adjacent conditions; Fig. 7a). These results indicate that there is dis-
criminable acoustic structure in (foreign) speech at timescales beyond 
480 ms. This structure is apparent to listeners, but does not alter the 
overall neural response magnitude in the fROI.

Compressed speech
To further explore the origins of the parametric response, we measured 
responses to quilts created from time-compressed speech. We used the 
original German speech recordings and compressed them by a factor 
of two. We reasoned that such signals contain twice as much speech 
information in a segment of a given length as uncompressed (normal) 
speech. If the parametric response in Figure 3 merely reflects depend-
encies in the stimulus, the response to quilts of compressed speech 
should shift leftward. Specifically, if the response plateau is a result of the 
dependencies in normal speech being negligible beyond 480 ms, such 
that quilts with 480 ms segments are acoustically equivalent to quilts 
with longer segments, the same phenomenon should occur at 240 ms  
in compressed speech, as the temporal dependencies that are present in 
480 ms of normal speech are packed into 240 ms of compressed speech. 
If, instead, the response plateau reflects an intrinsic timescale of analysis 
in the auditory system (receptive field time constants, for instance), 
then the dependence of the response on segment length might be 
expected to remain the same. Under this latter hypothesis, assuming 
that the brain is sensitive to the structure in compressed speech despite 
the time-compression, the fROI response should increase with segment 
length up to the temporal limits of its analysis. To minimize other dif-
ferences between stimuli, we performed compression with an algorithm 
that preserved pitch, such that the fundamental frequency range was 
the same for regular and time-compressed speech stimuli.

Although the fROI response to quilts of compressed speech was 
weaker than to those of normal speech, the shape of the paramet-
ric response was similar (Fig. 7b). The response in HG, in contrast, 
was similar for quilts of compressed and uncompressed speech, and 
a repeated-measures ANOVA with factors quilt type (compressed/
uncompressed), hemisphere and quilt segment length (30, 60,  
120, 240, 480, 960 ms) did not reveal any significant main effects or 
interactions (all P > 0.1).

To test whether the parametric response to quilts of compressed 
speech would plateau earlier than the uncompressed response, we 

7
a b

1.0

6

5

4

3

2

1
30 60 120 240 480 960 Orig

Segment duration (ms)

N
at

ur
al

ne
ss

 r
at

in
g

P
ro

po
rt

io
n 

of
 r

es
po

ns
e 

to
 lo

ca
liz

er
 (

96
0 

m
s)

30 60 120 240 480 960

Segment duration (ms)

0.9

0.8

0.7

N = 15

N = 11

0.6

Figure 7 Naturalness ratings and responses to compressed speech quilts. 
(a) Average ratings of the naturalness of quilted and unquilted speech 
stimuli for quilts made from uncompressed (blue) and compressed (red) 
speech (16 participants). Quilts from both quilt types were intermixed in 
a single block. Rated naturalness (±s.e.m.) increased monotonically with 
segment length for both quilt types, but the compressed speech quilts 
were overall rated as less natural. Naturalness ratings did not plateau at 
480 ms for either quilt type. ‘Orig’ denotes excerpts of unquilted speech, 
which were included in the behavioral experiment for completeness. 
(b) Comparison of responses to quilts made from uncompressed and 
compressed speech. Solid lines plot average responses (±s.e.m.) to quilts 
of different segment lengths generated from either uncompressed (blue) or 
compressed (red) speech. Dashed lines plot piecewise linear function fits 
to the BOLD response. Black lines denote median and 95% confidence 
intervals on the elbow points of the fit functions for compressed and 
uncompressed speech, derived from bootstrap.
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fitted it with the same piecewise linear elbow function. For both the 
compressed and uncompressed data sets, we computed the best-fitting 
functions for 10,000 bootstrapped samples and computed confidence 
intervals on the elbow points from the resulting parameter distribu-
tions. By this analysis, the elbow point for the response to compressed 
quilts was significantly different from 240 ms (P < 0.05), and not 
significantly different from the elbow in the uncompressed speech 
quilt response (P > 0.05).

Taken together, these results are consistent with the hypothesis that 
speech analysis in the fROI is mediated by receptive fields at the scale 
of ~500 ms and smaller, roughly between the scale of syllables and 
words at normal speech rates. When speech is compressed, the overall 
response is lower, presumably because compressed speech deviates 
from the structure of natural speech (Fig. 7a), and is therefore not 
an optimal stimulus for this part of the auditory system. However, 
compressed speech apparently contains enough natural structure 
that quilts from longer segments produce a higher response than 
quilts from shorter segments, up to the limits of the analysis window. 
Notably, this response increase occurred up to 480 ms, even though 
480-ms segments of compressed speech are generated from 960 ms of 
uncompressed speech, which did not itself produce a response incre-
ment, potentially because the underlying receptive fields are not long 
enough to register structure over such durations.

One natural question is whether the nature of the sensitivity to 
speech temporal structure might vary across subregions of the fROI 
(for example, different subregions might exhibit elbow points at dif-
ferent segment lengths). To address this issue we used a parcellation 
algorithm29 to identify plausible subregions in the activation locus of 
the functional localizer contrast, the responses of which we analyzed 
individually. This analysis did not reveal evidence for further differ-
entiation: anterior and posterior parcels in temporal regions showed 
similar parametric responses to speech quilts (Fig. 8). Furthermore, a 
clustering algorithm30 that searched for groups of voxels with similar  

parametric response profiles, irrespective of 
the voxel locations, yielded a single cluster 
whose mean response profile resembled the 
mean response of the fROI (Supplementary 
Fig. 4), even though in principle it could 
have yielded multiple clusters with different  
asymptotic behavior. Thus, we found no evi-
dence for distinct forms of temporal selec-
tivity at the voxel level, voxels were either 
sensitive to the quilting manipulation or not, 
and those that were sensitive exhibited a con-
sistent parametric response.

DISCUSSION
We identified a bilateral region in human 
STS that is tuned to the acoustic structure 
of speech, particularly its temporal structure.  
This region responded more to quilts com-
posed of long segments of speech than to 
quilts composed of short segments, even 
though these stimuli had comparable  
long-term and short-term spectral structure. 
The region is evidently sensitive to acoustic 
structure independent of lexical-semantic  
and syntactic content, as we exclusively 
used speech from an unfamiliar language. 
We found that the region’s response could  
not be explained by amplitude modulation 

sensitivity or by sensitivity to prosodic pitch variation. Its sensitivity 
to the extent of temporal structure was apparently speech specific,  
in that non-speech quilts elicited low responses that did not  
differ substantially as a function of segment length. The region  
also exhibited parametric sensitivity to the degree of temporal  
structure: its response increased as the timescale of naturalistic 
speech structure increased, but only up to a point. This plateau  
also occurred, and at a comparable timescale, for quilts made from 
speech that was time-compressed. Overall, our results demonstrate  
a locus of speech-specific acoustic analysis and are consistent  
with the idea that it operates at a timescale up to that between  
syllables and words.

Speech specificity
The degree to which particular cortical regions are selectively 
involved in processing speech signals remains controversial. Both 
functional magnetic resonance imaging (fMRI)31 and electrocorti-
cography32 recordings have identified superior temporal lobe regions 
that display sensitivity to attributes of speech, typically at the level of 
single phonemes. However, the specificity of such regions to speech 
has remained unclear. For example, although domain specificity 
is commonly proposed for other perceptual and cognitive systems  
(for example, see refs. 20,33), the notion that temporal lobe regions 
are generic in their processing is a popular conclusion of auditory 
imaging reviews34,35. Moreover, much prior work has focused on 
manipulations of intelligibility that typically affect both speech 
acoustics and linguistic content, leaving distinctions between speech 
processing and linguistic processing unresolved3,9–11. We introduced 
sound quilting as a new method for manipulating temporal structure 
in audio signals and applied it to foreign speech, isolating responses 
to the acoustic-phonetic structure of speech that are distinct from 
those to higher order, lexically or syntactically driven structure.  
The observed responses to speech quilts, coupled with our control 
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experiments with non-speech quilts, provide evidence for speech-
specific processing that is distinct from linguistic processes.

In particular, our results demonstrate that speech analysis is not 
simply driven by amplitude modulation (AM). Syllable-rate AM is a 
prominent feature of speech signals and has been found to produce 
stronger responses in human auditory cortex than modulations at faster 
rates14–16,24,25. However, we found that control quilts whose AM char-
acteristics were matched to those of our speech stimuli produced weak 
overall responses that were independent of quilt segment length, quali-
tatively different from the responses to speech quilts. These results do 
not exclude a role for slow AM in speech analysis, perhaps in the context 
of parsing the signal36, but suggest that AM can only be part of the 
story—the STS region that we identified is apparently more specifically 
tuned to speech-like spectro-temporal structure. Our results also suggest 
some degree of tuning to speech-like spectral structure: responses to 
speech quilts of even the shortest segment lengths used always consider-
ably exceeded those to each of the non-speech control stimuli.

Hierarchy of selectivity
Our results reveal clear differences between primary auditory cortex 
and the regions that we found to be selective to speech structure, 
extending existing evidence for a hierarchical organization of audi-
tory cortex4–10,37–39. Whereas the STS speech region differentiated 
between long- and short-segment quilts, as well as between speech 
quilts and every other sort of quilt that we presented, HG displayed 
an overall response that was largely stimulus-invariant. This likely 
reflects the similarity of our stimuli in overall spectral and modula-
tion power, features that are often argued to drive primary auditory 
regions37. For the most part, PT was similarly insensitive to our main 
stimulus manipulations. Speech-specific analysis is evidently per-
formed subsequent to several stages of more generic auditory process-
ing in the auditory pathway. Our results failed to reveal functional 
differentiation40 in the area identified by our functional localizer  
(for example, in the shape of the parametric response), but are obvi-
ously limited by the spatial resolution of the hemodynamic response. 
It remains conceivable that subregions in the fROIs that we measured 
have distinct functional roles that could be revealed by additional 
experimental manipulations.

Lateralization
The cortical structures for processing speech have historically been 
attributed to the left or ‘dominant’ hemisphere. After decades of debate, 
the emerging consensus is that processing becomes progressively more 
left-lateralized as signals become progressively more speech-like41. Our 
results provide some support for this view, in that the effect of segment 
length was somewhat more pronounced in the left hemisphere fROIs than 
in the right. However, it is apparent from the activation maps (Fig. 2),  
the parametric response curves (Fig. 3) and the non-significant effect 
of fROI volume that the hemispheric effects are modest: the effect of 
speech segment length was robust in both hemispheres. It is therefore 
possible that laterality effects are driven more by higher order linguistic 
processing demands than by speech analysis per se6,42,43.

Analysis timescale
Clues to the analysis occurring in the STS region we identified may be 
found in the response plateau at segment lengths of around 500 ms.  
Because the response of any speech-selective mechanism seems likely 
to be a highly nonlinear function of the sound waveform, we currently 
lack a quantitative model with which to generate precise predictions 
of the region’s response. However, the observed response plateau 
is, at least naively, suggestive of neuronal mechanisms that analyze 

speech-related acoustic structures less than ~500 ms in duration.  
On the assumption that such mechanisms are tuned to the structure 
of natural speech, their response should increase as the temporal 
extent of naturalistic structure increases, but this response increase 
should be limited by the temporal integration limits of the underlying  
neuronal populations. The parametric response to quilts of time-
compressed speech also exhibited a plateau at ~500 ms, indicating 
that the response pattern is not simply determined by the intrinsic 
temporal dependencies of the stimulus and could reflect an archi-
tectural property of that part of auditory cortex. One possibility is  
that the STS is involved in analyzing acoustic structures in speech 
ranging from single phonemes (20–80 ms) to pairs of syllables  
(250–500 ms). These acoustic-phonetic primitives could then be 
passed on to linguistic mechanisms that would match their sequential 
structure to lexical representations2,4.

It is noteworthy that speech contains acoustic structure at time- 
scales longer than 500 ms. Indeed, the results shown in Figure 7a 
indicate that these dependencies exist and that human listeners are 
sensitive to them, as perceived naturalness did not plateau at 500 ms. 
One possibility is that most dependencies beyond 500 ms are a result 
of relatively generic fluctuations in pitch and amplitude that are found 
in many natural sounds44,45, and as such are extracted elsewhere46.

Imaging and recent electrophysiological data32,47 suggest that cortical 
fields in lateral STG mediate the processing of subphonemic features, 
whereas lexical-level processing requires the middle temporal gyrus 
(MTG)48,49. However, the features of speech that comprise phonemes 
are typically short17,18. Our data raise the possibility of an intermediate 
processing stage in STS in which features and phonemes are integrated 
over time to extract longer-scale speech structures and build syllabic or 
lexical-size perceptual representations. Such representations could trig-
ger or facilitate the linguistic processing that underlies comprehension. 
A potential STG-STS-MTG processing hierarchy makes reasonable  
functional anatomic sense, but obviously merits follow-up.

Open questions
Our results suggest a number of potentially important future  
directions. Analogous quilting experiments using speech in a familiar  
language could conceivably produce stronger lateralization41 and 
could shed light on the relation between speech-specific temporal 
analysis, intelligibility and linguistic processing. Given that German 
and English have considerable phonological overlap, it would also be 
informative to examine segment-length effects in languages that are 
more foreign in their phonemic inventory and phonological struc-
ture (for example, Mandarin Chinese or Zulu for English listeners). 
It will also be important to clarify the relation between our effects 
and putative voice-sensitive regions39; speech quilts arguably sound 
increasingly like realistic voices as the segment length increases. Much 
could also be learned from responses to speech quilts in non-human 
primates. Potentially homologous voice-selective regions have been 
identified in macaques50, but the nature of their temporal selectivity 
remains unclear, as does their relation to speech-selective brain regions 
in humans. Measuring responses in non-human animals to quilts made 
from speech and from species-specific vocalizations could provide 
insight into the evolutionary origins of human speech analysis.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

http://www.nature.com/doifinder/10.1038/nn.4021
http://www.nature.com/doifinder/10.1038/nn.4021
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ONLINE METHODS
Participants. 17 unique participants (mean age = 22.45, range = 18–30) took part 
in the fMRI experiments (Supplementary table 1). 16 additional participants 
(mean age = 35.8, range = 21–65, 9 females) took part in a behavioral experiment 
rating sound quilt naturalness. All participants were native speakers of American 
English, with no knowledge of German. All participants provided informed con-
sent in accordance with the New York University Committee on Activities involv-
ing Human Subjects and the Massachusetts Institute of Technology Committee 
on the Use of Humans as Experimental Subjects. One participant (KD, see 
Supplementary table 1) was excluded from further analysis because he failed to 
show a reliable response for the functional localizer contrast in both hemispheres, 
and thus we could not define fROIs. One participant (DC, see Supplementary 
table 1) only contributed data for the compressed speech stimulus set (S50) 
since the data from the repeat session (S51) were unrecoverable because of a 
trigger malfunction. No statistical methods were used to predetermine sample 
sizes but our sample sizes are similar to those reported in previous studies51.  
Participants were semi-randomly assigned for their initial scanning session;  
subsequent sessions were constrained such that no participant took part in the 
same control experiment twice.

Quilting algorithm. The quilting algorithm (Fig. 1a) generated sound signals 
by rearranging segments of a source signal. The goal of the algorithm was to 
preserve stimulus properties at a specified short timescale as best possible but to 
leave structure at longer timescales otherwise unconstrained. This was achieved 
by ordering segments such that adjacent segment pairings were distinct from 
those in the source signal but such that the magnitude of the change across seg-
ment borders (in a simulated cochleogram) was otherwise as close as possible in 
magnitude to that in the source. Segments were then concatenated using pitch-
synchronous overlap-add (PSOLA)52 to eliminate phase discontinuities.

The algorithm included the following steps: (1) Choose a segment duration, 
and divide the source signal into segments of that length. (2) Assign a randomly 
chosen segment from the source signal (uniformly distributed over the length of 
the source) to be the first segment of the stimulus. We denote the position of the 
chosen segment in the source signal with the index k. (3) Compute the average 
change in the cochleogram (using an L2 metric) between the right-hand border 
of the chosen segment and the left-hand border of the remaining segments in the 
source signal, where the border is taken to be 30 ms in length: 

d k n C t f C t fk
R

n
L

t f
( , ) [ ( , ) ( , )]

,
= −∑ 2

 

Ck
R  and Cn

L  denote the right and left borders of cochleogram segments k and n, 
respectively. 

C C j w j w Fj
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Here the cochleogram C is indexed in ms for simplicity, w is the segment length 
in ms and F is the index of the maximal frequency channel. (4) Choose the  
next stimulus segment to be that which gives a segment-to-segment change that 
is closest to the segment-to-segment change between segment k and segment  
k + 1 in the source signal. 

i d k n d k k n k n Sn= − + ≠ + ∉argmin | ( , ) ( , ) |, ,1 1

where S is the set of all previously used segments. (5) Repeat steps 1–3 for  
the segment just chosen until the segment re-ordering is of the desired length.  
(6) Concatenate segments via PSOLA by (a) shifting the boundaries of segment 
n forward or backwards by at most 15 ms to maximize the cross-correlation 
between the waveforms of segment n and of the preceding stimulus, over the  
30-ms region straddling the transition between segments; (b) cross-fading 
between segment n and the preceding stimulus using 30-ms raised cosine ramps 
centered on the segment boundary (such that a 15-ms buffer region is included  
on each end of each segment).

Cochleograms were computed using the auditory filterbank from ref. 26  
(30 filters spanning 20 to 10,000 Hz, equally spaced on an ERBN scale), by raising  

the Hilbert envelopes of the resulting subbands to a power of 0.3 (to simulate 
cochlear compression). Matlab code for implementing the quilting algorithm is 
available at http://mcdermottlab.mit.edu/.

Segment sizes were log-spaced multiples of 30 ms: 30, 60, 120, 240, 480  
and 960 ms.

Stimuli. Quilts were generated from 20-s source signals, all of which were  
resampled to 20 kHz and bandpass filtered between 80 and 8,500 Hz before  
quilting (third order Butterworth filter, forward and reversed filtered to avoid 
phase shifts). All stimuli were 6 s in length. A linear fade was applied to the  
last second of each stimulus.

Speech source signals. Speech source signals were excerpted from recordings 
made by eight German-speaking volunteers reading from a German book. 
Breaths and pauses were excised from the recordings, producing ~12 min of 
continuous speech. The resulting speech source signals had syllable rates in the 
normal range (Supplementary table 2).

modulation and co-modulation control stimuli. Modulation control source 
signals were generated with the texture synthesis algorithm of McDermott  
and Simoncelli26. Synthetic signals (20 s in length) were generated that matched 
either (1) the envelope marginal statistics and modulation power or (2) the 
envelope marginal statistics, modulation power and cochlear correlations of 
each of the 20-s speech source signals used for speech quilt generation. Statistics 
were measured and imposed using the auditory model specified in the original  
paper26 (code for the texture synthesis is available at http://mcdermottlab.mit.
edu/). These stimuli control for many standard acoustic properties but do not 
replicate all aspects of the temporal structure of the source signal, including 
dependencies between different modulation frequencies in a subband envelope, 
or correlations between the envelopes of different subbands at different points in 
time (as produced by formant transitions, for instance). Modulation spectra in 
Figure 4a were generated by measuring the power in a set of logarithmically spaced 
modulation filters26 (each of which was applied to the envelope of a cochlear 
 filter) for each stimulus, averaging across stimuli in each condition, and then 
dividing each power value by the total average power across all filters for that 
condition. Correlation matrices in Figure 4c were generated by averaging the 
correlation matrices over each stimulus in a condition (the correlation matrices 
were computed from the envelopes of a set of simulated cochlear filters26).

environmental sounds. Environmental sound source signals were selected 
to have extended temporal structure. A large set of environmental sounds was  
initially used to generate quilts, and 18 sounds for which quilting produced  
the most salient effect (as subjectively judged by the authors) were chosen for the 
experiment. These sounds comprised (1) cars racing around a track, (2) fireworks,  
(3) firecrackers, (4) a pile driver, (5) raking leaves, (6) brushing teeth, (7) a person  
running up stairs, (8) a person jogging on gravel, (9) a person walking on 
gravel, (10) people marching, (11) ping pong, (12) sawing wood with a handsaw,  
(13) sanding wood by hand, (14) British church bells, (15) country church  
bells, (16) dogs barking, (17) pigs squealing and grunting, and (18) a bird  
singing. All of these source signals had epochs of silence removed using the  
same procedure used for the speech recordings.

noise-vocoded speech. Noise-vocoded speech was generated by decomposing 
the speech source signals into frequency subbands, measuring their envelopes 
and then imposing these envelopes on subbands of white noise. Subbands were 
generated in the frequency domain with a filter bank that included 10 band-
pass filters with center frequencies evenly spaced on an ERBN scale, along with 
lowpass and highpass filters on the ends of the spectrum such that the summed 
response of the filter bank was flat over the entire spectrum. Center frequencies 
of the bandpass filters ranged from 120 to 7,067 Hz. Adjacent filters overlapped 
by 50% in the frequency domain, with half-cycle cosine frequency responses. 
The lower absolute cutoff of the lowest bandpass filter was 20 Hz, and the higher 
absolute cutoff of the highest bandpass filter was 10 kHz. Subband envelopes 
were measured as the magnitude of the analytic signal obtained via the Hilbert 
transform, downsampled to 100 Hz.

Speech envelopes were imposed in 30 iterations of the following set of steps. 
(1) Measure envelopes in noise-vocoded stimulus (initialized as white noise). 

http://mcdermottlab.mit.edu/
http://mcdermottlab.mit.edu/
http://mcdermottlab.mit.edu/
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(2) Divide noise-vocoded subbands by their envelopes to yield the subband 
fine structure. (3) Multiply the noise-vocoded subband fine structure by the 
envelope of the corresponding speech subband (upsampled to the 10 kHz sam-
pling rate of the subband). (4) Filter the subbands with the same filters used to  
produce them (to enforce their bandlimits, as is standard in analysis-synthesis 
subband transforms26), and then sum the results to yield a full-bandwidth noise-
vocoded stimulus.

This procedure differs from that used conventionally27 in the use of over-
lapping filters and an iterative imposition procedure. The filter overlap has the 
advantage of generating a signal whose envelopes are similar to those of the 
source signal regardless of the exact filter bank used for measurement. Iteration 
has the advantage of ensuring that the generated signal has the desired envelopes. 
It is necessary because the subbands overlap, because the envelope imposition 
does not always respect the subband bandlimits, and because the envelope and 
fine structure are not independent, such that a single iteration of this procedure 
typically produces a signal whose envelopes deviate significantly from the target 
speech envelopes. As this procedure is repeated the envelopes converge to the 
desired values, and the fine structure of the noise-vocoded signal relaxes to a state 
that is consistent with the envelopes.

time-compressed speech. Speech was time-compressed using the pitch- 
preserving compression/dilation algorithm in Praat.

experimental design. All stimuli were presented using Psychophysics Toolbox 
Version 3 (ref. 53). Ten conditions were presented in each scanning session. 
Two ‘localizer’ conditions (speech quilts with 30- and 960-ms segments, respec-
tively; L30 and L960) were always included, and were used to define fROIs.  
Six parametric speech quilt conditions (S30, S60, S120, S240, S480, S960) were 
also always included (for the compressed speech experiment these quilts were 
made from compressed speech), and were used to characterize the response with 
data independent of that used to define the fROIs. Finally, two control condi-
tions (quilts made from various non-speech source signals, with segment lengths  
of 30 and 960 ms; C30 and C960) served to investigate alternative explanations 
of the effects of interest.

A scanning session consisted of four ‘runs’ lasting 17 min each. Stimuli were 
presented in a pseudo-randomized fashion that boosted contrast selectivity. Each 
condition was presented 36 times per scanning session (in addition to 36 silent 
trials of 10-s duration) with a mean inter-stimulus interval of 4 s (range 3–5 s).  
Sound quilts in the L30 and S30, as well as the L960 and S960 conditions, respec-
tively, used different exemplars. Participants were asked to keep their eyes open 
and to press a button at the end of each stimulus. Stimuli were presented at a 
comfortable listening level (~75 dB SPL) via Sensimetrics MRI-compatible insert 
earphones (Model S14); participants wore protective earmuffs to further reduce 
the scanner noise.

Repeat sessions. To maximize power within individual participants, each par-
ticipant was scanned in multiple sessions when possible (1–4 sessions). Across 
repeat scanning sessions conditions 1 to 8 (that is, L30, L960, and S30 to S960) 
were fixed (though we used two sets of speakers across experiments to minimize 
speaker familiarity effects); the two control conditions varied. The exception 
to this was the compressed speech experiment, in which participants listened 
to the two functional localizer conditions (L30, L960), a set of parametrically 
varied quilts of temporally compressed speech (Comp30, Comp60, Comp120, 
Comp240, Comp480 and Comp960 quilts), and two other conditions whose 
stimuli turned out to have artifacts and were not analyzed. The participants in 
the compressed speech experiment were also scanned with analogous uncom-
pressed speech conditions (12 of the 17 unique participants; see Supplementary  
table 1) to enable direct comparison.

Image acquisition. T2* gradient-weighted echo-planar images (EPI) were 
acquired on a 3-T Siemens Allegra system using a Nova Medical NM-011 head 
coil. 30 slices (2 × 2 × 2-mm voxels) were acquired for each volume (time to repeat 
(TR) / time to echo (TE): 2,100 / 30 ms; flip angle: 90°; field of view (FOV): 224;  
acquisition matrix: 112 × 112). The acquisition volume was tilted forward 
such that slices were parallel to and centered on the superior temporal gyrus. 
For each of four runs, 484 volumes were acquired (total of 1,936 volumes  
per session). After the second run, a calibration scan was acquired to allow  

correction of inhomogeneities of the B0 field in the EPI images. A structural high- 
resolution T1-weighted MRI (MPRAGE) scan (TR/TE: 2,500/3.93 ms; FOV: 256) 
was acquired for each participant.

data analysis. Data collection and analysis were not performed blind to the 
conditions of the experiments. Imaging data were analyzed using Statistical 
Parametric Mapping software (SPM8, http://www.fil.ion.ucl.ac.uk/spm).  
The first four volumes in each run were discarded to control for T1 saturation 
effects. The remaining 1,920 scans were realigned to the first volume in the first 
block, un-warped to correct for motion artifacts and re-sliced using sinc inter-
polation (SPM8, realign and unwarp); the structural scan of each participant 
was coregistered to the mean functional scan (SPM8, coregister), segmented and 
spatially normalized to standardized stereotaxic MNI space (SPM8, segment),  
before applying the resulting linear transformations to the EPIs and structural 
scan (SPM8, normalize: write). Finally, the EPIs were spatially smoothed to 
improve the signal-to-noise ratio using an isotropic 6-mm full-width at half-
maximum (FWHM) Gaussian kernel.

The design matrix for each participant consisted of ten regressors (correspond-
ing to the ten experimental conditions), derived by convolving the stimulus 
response function (modeled as a 6-s box-car function) with SPM’s canonical 
hemodynamic response function. The silent periods were not modeled explicitly. 
Data were high-pass filtered at 1/128 Hz to remove slow drifts in the signal.

For each participant, we calculated an individual fROI by contrasting the two 
functional localizer conditions [L960 > L30] using a t test. For participants that 
were scanned more than once, we derived the fROI by calculating the [L960 > L30]  
contrast using data combined across repeat sessions. Individual fROIs (one per 
hemisphere, per participant) comprised voxels that (a) survived a statistical 
threshold (P < 0.001, uncorrected for multiple comparisons, for participants who 
were scanned up to two times, or P < 0.05, FWE, corrected, for participants who 
were scanned more than twice), and (b) lay within the superior temporal lobe.

Group-level analyses were based on a random-effects model within the context 
of the general linear model54. For group-level analyses, the smoothing of contrast 
images was increased to an effective 8 mm FWHM Gaussian kernel. The contrast 
images for the [L960 > L30] functional localizer contrast were subjected to a 
second-level one-sample t test; the group fROIs (one per hemisphere) comprised 
voxels that (a) survived a statistical threshold (P < 0.0001, uncorrected for multiple  
comparisons), and (b) lay within the superior temporal lobe. The group fROI 
was analyzed both to provide a general picture of the anatomical distribution 
of our effects, and because it seemed desirable to compare the (group-derived) 
anatomical ROIs to a group-derived functional ROI.

In addition to the two functional ROIs, we used two anatomical ROIs in HG 
(roughly corresponding to primary auditory cortex) and PT (part of non-primary  
auditory cortex), based on previously described probability maps (refs. 55  
and 56, respectively). Both ROIs were thresholded such that they only included 
voxels with at least 30% probability of belonging to either structure.

The percent signal change in these four ROIs was calculated using MarsBaR57. 
Because overall response levels varied across participants and ROIs, we normal-
ized the percentage signal change for each condition and ROI by the ROI response 
to the L960 condition.

For the parcellation algorithm29, the four runs of each participant’s experi-
mental session were used to obtain functional ROIs for the Localizer contrast  
([L960 – L30]); as above, repeat participant’s runs were concatenated so that 
the parcellation algorithm worked on 4 runs for each unique participant. fROI 
parcels were based on a statistical threshold of P < 0.001 (uncorrected), an over-
lap threshold across participants of 1/(number of unique participants – 1), an 
overlap threshold for ROIs of 0.5, and 8-mm smoothing. This was computed for 
all participants and their experimental sessions, since all participants listened to 
the L30 and L960 conditions. Responses to the six parametric segment length 
conditions (S30 to S960) were measured in the resulting five parcels in the subset 
of participants who were presented with them (Supplementary table 1).

For the mixture model clustering algorithm30, all uncompressed speech quilt 
data from a participant were averaged to yield a single data set per subject (the 
average response of each voxel to each stimulus condition). These data sets were 
pooled together to form the input to the clustering algorithm (restricting the 
analysis to voxels that lay within the superior temporal lobe, as for all analyses 
in this paper). We searched for nine possible clusters, using 100 repetitions and 
mean centering to exclude cluster profiles that showed no response selectivity 

http://www.fil.ion.ucl.ac.uk/spm
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(that is, that were flat across segment lengths, as in HG, because the purpose of the 
analysis was to probe for distinct forms of sensitivity to the quilt segment length 
manipulation). Consistency scores were then computed for each cluster. The 
subsequent permutation test (which is blind to the true condition assignments) 
was run using 10,000 iterations and a model updating threshold of 10−4.

Statistics. Data distributions were assumed to be normal, but this was not  
formally tested. Normalized BOLD percentage signal change data were analyzed  
via two-way repeated-measures ANOVAs, using the Greenhouse-Geisser  
correction when Mauchly’s test indicated violations of the sphericity assumption.  
For the initial comparison (Fig. 3), factors were ROI (HG, PT, group fROI, 
individual fROI), hemisphere (left, right) and segment length (30, 60, 120, 240, 
480, 960 ms). Planned pair-wise tests used Bonferroni correction for multiple  
comparisons. When comparing the responses of speech quilts with the  
various control conditions, we computed two-way repeated-measures ANOVAs 
for each ROI (HG and individual fROI) separately with factors quilt type (speech, 
control), hemisphere (left, right) and segment length (30, 960 ms). To evaluate 
lateralization, we used a paired-samples t test comparing the number of voxels 
in the individual left and right hemisphere fROIs.

Behavioral ratings (Fig. 7a) were analyzed using a repeated-measures ANOVA 
with factor segment length (30, 60, 120, 240, 480, 960 ms, original).

To evaluate whether the piecewise linear ‘elbow’ model provided a better 
description of the parametric response than a simpler linear model, we meas-
ured the error on left-out data. For each of the 15 participants, we computed the 
average parametric response across the other 14 participants, fit both functions 

to this average response and then measured the error on the left-out participant’s 
data. We then performed a paired t test on these residuals (comparing the elbow 
and linear models).

For the evaluation of the response plateau (Fig. 7b), bootstrapping was per-
formed using 10,000 samples. On each bootstrap iteration, the data was resampled 
by choosing random sets of either 15 or 11 subjects (for the uncompressed and 
compressed experiments, respectively) with replacement. For each sample, we 
computed the mean parametric response and fitted the elbow function to this 
mean response used least-squares. Confidence intervals were derived from the 
2.5th and 97.5th percentiles of the resulting distribution of elbow points.

A Supplementary methods checklist is available.
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