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Cocktail parties and other natural auditory environments present
organisms with mixtures of sounds. Segregating individual sound
sources is thought to require prior knowledge of source properties,
yet these presumably cannot be learned unless the sources are
segregated first. Here we show that the auditory system can
bootstrap itsway around this problemby identifying sound sources
as repeating patterns embedded in the acoustic input. Due to the
presenceof competingsounds, source repetition is notexplicit in the
input to the ear, but it produces temporal regularities that listeners
detect and use for segregation.We used a simple generative model
to synthesize novel sounds with naturalistic properties. We found
that such sounds couldbe segregatedand identified if theyoccurred
more than once across different mixtures, even when the same
sounds were impossible to segregate in single mixtures. Sensitivity
to the repetition of sound sources can permit their recovery in the
absence of other segregation cues or prior knowledge of sounds,
and could help solve the cocktail party problem.

auditory scene analysis | cocktail party problem | generative models of
sound | natural sound statistics | sound segregation

Auditory scenes generally contain multiple sources, the sounds
from which add together to produce a mixed signal that

enters the ears. In most behavioral contexts, however, it is the
sources, not the mixture, that are of interest. This is often termed
the “cocktail party problem”—organisms must infer individual
sound sources from ambiguous mixtures of sounds (1–7).
Recovering individual sound sources from an auditory scene

requires assumptions, or priors, about what sources are like (8).
For instance, listeners implicitly assume that frequency compo-
nents that are regularly spaced (9, 10), begin and end simulta-
neously (11), or have similar distributions of binaural spatial cues
(12) belong to the same sound. Listeners also use knowledge of
specific familiar sound classes, filling in masked syllable segments
in ways that are consistent with known speech acoustics (13).
Priors on sounds are thus used by the auditory system and

must somehow be acquired; yet natural environments rarely
feature isolated sound sources from which they could be readily
learned. Organisms face a “chicken and egg” problem—sound
sources must be separated from mixtures for their properties to
be learned, but to separate sources from mixtures, listeners need
to know something about their characteristics to begin with.
It is possible that priors are at least partially built into the

auditory system by evolution, or that listeners can learn them
from occasionally hearing sound sources in isolation. In this
paper we consider an alternate, complementary, solution—that
listeners might detect sources as repeating spectro-temporal
patterns embedded in the acoustic input. Both individual sound
sources and their mixtures produce combinations of acoustic
features, but because mixtures result from multiple independent
sources, the feature configurations that they produce are unlikely
to occur repeatedly with consistency. Repetition is thus a signa-
ture of individual sources. The repetition of a sound source is
generally not explicit in the signal that enters the ear, due to the
corruption of a source’s acoustic signature by other sounds.
However, repeating sources induce temporal regularities in the
mixed auditory input, which we suggest are detected and used by
the auditory system to recover sound sources.
To explore this idea, we studied the conditions under which

listeners could identify novel sound sources that they only ever
heard in mixtures with other sounds. We developed a method to

synthesize novel sounds that shared some of the correlation
structure of natural sounds (14–16) but that lacked strong group-
ing cues, and presented listeners with mixtures of these sounds.
Listeners were generally unable to identify the sounds composing
a single such mixture, but when presented with multiple mixtures
of a particular target sound with various others, they heard the
target repeating acrossmixtures and could reliably identify it. Even
two presentations of the target yielded a significant benefit.
Our results indicate that listeners detect latent repeating

spectro-temporal structure within sound mixtures and from this
can identify individual sound sources. Sound source repetition
thus serves as a powerful cue that can “bootstrap” performance
in situations in which other bottom-up cues and top-down
knowledge are unavailable, and as such may play an important
role in auditory scene analysis.

Results
Generative Model for Sounds. To test whether source repetition
might by itself be sufficient for sound segregation, it was im-
portant both to use novel sounds, so that familiarity would not
enable segregation, and to minimize the presence of bottom-up
grouping cues in our test stimuli. However, we wanted our results
to have real-world relevance, and thus to use stimuli with some
similarity to natural sounds. We met these goals by modeling the
time-frequency decomposition (spectrogram) of a sound as
a Gaussian-distributed random variable with correlations that
resembled those in natural sounds.
We first generated spectrograms for sets of spoken words (Fig.

1A) and animal vocalizations (Fig. 1B). Such spectrograms ge-
nerally share a simple property: the energy at nearby points tends
to be similar (14–16). This is evident when the correlation between
pairs of spectrogram cells is plotted as a function of their time and
frequency offset (Fig. 1 C and D). For both classes of natural
sounds, correlations are high for small offsets and decline with
separation in time or frequency, whereas for noise signals they are
absent. Such results follow from the common finding that natural
modulation spectra (related to correlation functions via the
Fourier transform) peak at low modulation frequencies (14–16)
and thus exhibit correlations over moderate time/frequency scales.
We used correlation functions similar to those of natural

sound sets (Fig. 1 C and D) to generate a covariance matrix, each
element of which was the covariance between two spectrogram
cells. Spectrograms were drawn from the resulting Gaussian
distribution and applied to samples of white noise, yielding novel
sounds (Fig. 1 E and F). Related stimuli result from constraining
the modulation spectrum of noise (16); our spectrogram-domain
method had advantages in implementing our task (SI Materials
and Methods). Although our stimuli shared important statistical
properties of real sounds, they lacked the grouping cues provided
by abrupt temporal onsets and harmonic spectral structure, both
of which are important for sound segregation (1, 2) but which are
not captured by second-order correlations.
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Performance-Based Measure of Sound Segregation. We assessed
sound segregation by presenting mixtures of sounds (Fig. 1G)
followed by a probe sound. Listeners judged whether the probe
hadbeenpresent in themixture(s). Theprobewas either one of the
sounds in the mixture(s), termed the “target” sound, or another
sound with statistics similar to the target (Fig. 1H). In the latter
case, the probewas constrained to be physically consistent with the
mixture (such that—like the target—it never hadmore energy than
themixture). Each target was presented only once per experiment,
so that subjects could not learn the targets from the probes.
Following the probe presentation, subjects selected one of

four responses (“sure no,” “no,” “yes,” or “sure yes”) to indicate
whether they thought the probe was one of the sounds in the
mixture. These responses were used to generate a receiver op-
erating characteristic (ROC) curve. The area beneath the curve

was our performance measure (17); chance and perfect perfor-
mance corresponded to areas of 0.5 and 1, respectively. All of the
effects reported here are evident in the stimulus examples
available at http://www.cns.nyu.edu/∼jhm/source_repetition.

Experiment 1: Sound Segregation with Single Mixtures.We began by
presenting subjects with single mixtures of two sounds (Fig. 1I).
Sound segregation should permit a listener to judge whether
a subsequent probe sound was one of the sounds in the mixture.
However, performance was generally at chance levels, even after
considerable practice [condition 1: t(9) = 0.64, P = 0.54]. Per-
formance remained close to chance when we included a third
sound and made the sounds asynchronous [condition 2: t(9) =
−0.65, P=0.53]. Asynchrony should enhance the bottom-up group-
ing cue provided by onset differences between sources (1, 2, 11);
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Fig. 1. Stimulus generation and results of Experiment 1. (A and B) Time-frequency decomposition of a spoken word and a bullfrog vocalization. (C and D)
Correlation between nearby time-frequency cells as a function of their temporal (C) and spectral (D) separation. (E and F) Two spectrograms generated by our
model. (G) Spectrogram of the mixture of the sounds from E and F. (H) Spectrogram of an incorrect probe sound, generated to be physically consistentwith the
mixture inG. (I) Results and stimulus configurations fromExperiment 1. Line segments represent sounds; sounds presented simultaneously are drawnas vertically
displaced.Distinct sounds are indicatedbydifferent colors. Red segments represent target sounds, andblack segments represent probe sounds. Error bars denote
SEs. The dashed line represents the chance performance level.
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the lack of effect suggests that any onsets in our stimuli were too
weak to support segregation. We also tried presenting the probe
sound before the mixture, so that subjects knew what sound to
listen for, but performance was still not significantly different
from chance [condition 3, synchronous: t(9) = 2.23, P = 0.053;
condition 4, asynchronous: t(9) = 1.8, P = 0.1], although there
was a small effect of hearing the probe first [F(1,9) = 7.33,
P = 0.02].
Thepoor performancewasnot due to an inability to discriminate

different synthetic sounds; the correct and incorrect probe sounds
were easily distinguished when presented in isolation [condition 5:
t(9) = 56.1, P < 10−12]. Moreover, when the target and incorrect
probe sounds for a particular mixture were each mixed with the
same unrelated second sound, the resulting mixtures themselves
were discriminable [condition 6: t(9) = 12.5, P < 10−6]. Thus,
chance performance in the sound segregation task was not due to
limits on encoding of the mixtures (as it would be if the stimulus
differences needed to performour taskwere completelymasked by
theother sound in themixture).Rather, performancewasevidently
limited by the inability to segregate the mixture into two sounds.
The subjective experience of listening to the mixtures was consis-
tentwith this conclusion.Themixtures usually sounded like a single
sound that was qualitatively different from the target sound.
These results indicate that our stimuli met our principal objec-

tives. Despite having some naturalistic structure, they lacked the
grouping cues needed to segregate them from a mixture. This
made them well suited to our primary goal of testing whether
sound structure could be extracted from multiple occurrences of
a target sound.

Experiment 2: Sound Segregation with Multiple Mixtures. To test
whether listeners could benefit from sound source repetition across
mixtures, we presented target sounds repeatedly, each time mixed
with a different “distractor” sound. Despite the difficulty of segre-
gating single mixtures, a target presented more than once in suc-
cession was usually heard repeating through the mixtures, and
listeners rapidly developed an impression of it. In Experiment 2a we
quantified this benefit, varying the number of mixtures and measur-
ing howwell subjects could discriminate correct from incorrect target
probes. Performancewas again at chance levels with a singlemixture,
but improved as subjects heard more mixtures (Fig. 2A). Perfor-
mancewas significantly improvedevenwith twomixtures [t(9)=3.66,
P= 0.005] and appeared to asymptote with about five mixtures.
To rule out the possibility that the improvement with multiple

mixtures was due merely to repeated exposure to the target, in
Experiment 2b we held the number of mixtures constant at 10,

but varied how many different mixtures occurred in the se-
quence. In the single-mixture condition, subjects heard the same
mixture 10 times. The 10-mixture condition was the same as in
Experiment 2a. The other conditions repeatedly presented two,
three, or five mixtures in a fixed order over the course of the
sequence, with each mixture containing the target sound.
Performance again steadily increased with the number of

different mixtures (Fig. 2B), even though the target was always
presented the same number of times. The ability to hear the
target sound thus appears to depend on the number of different
mixtures that a listener hears, not on the total number of target
presentations. An ANOVA comparing the two experiments
showed a main effect of the number of different mixtures
[F(4,36) = 115.35, P < 0.0001], but no effect of experiment type
[F(1,9) = 0.73; P = 0.42] and no interaction [F(4,36) = 0.59,
P = 0.67]. See SI Results for additional controls.
As with the single mixtures of Experiment 1, the sounds

composing the single repeated mixtures tended to blend together
and rarely bore close resemblance to the target sound. This is
consistent with the idea that listeners detect repeating sound
structure and attribute it to individual sources; when the same
mixture repeats, it is heard as a source, and the target structure is
no more apparent than when it is heard only once.

Experiment 3a: Asynchronous Mixtures. Experiment 2 featured
synchronously presented sounds, but distinct sources in real-
world scenes are generally asynchronous. Experiment 3a con-
firmed that the benefit of multiple distinct mixtures persisted
when the target and distractors were temporally offset to better
resemble natural conditions (Fig. 3A, Left, condition 1 vs. condi-
tion 2). As before, a single repeated mixture yielded near-chance
performance, but presenting different mixtures in succession en-
abled discrimination of the target sound [F(1,7) = 116.87, P <
0.0001]. The effect of multiple mixtures in this case swamps that
of any grouping cue provided by the asynchrony (consistent with
the weak onsets in our sounds), and is not specific to synchro-
nously presented sounds.
The effect was also evident when the target sound was pre-

sented with every other distractor in a sequence (Fig. 3A, Right,
conditions 3–5). When the distractors that co-occurred with the
target varied (condition 3), performance was well above chance,
even though the distractors that alternated with the target re-
peated (P = 0.004, sign test). But when the distractor sequence
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Fig. 2. Effect of multiple mixtures on sound source recovery. (A) Different
numbers of mixtures were presented. (B) Ten mixtures were presented in all
conditions, and thenumberofdifferentmixtureswas varied. Conventionshere
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was phase-shifted by a target length, so that the repeating dis-
tractors co-occurred with the target (condition 4), the target was
generally unidentifiable. When every distractor repeated (con-
dition 5), performance tended to be intermediate between the
other two conditions (significantly worse than the variable con-
dition and better than the repeated condition, P = 0.008 and
0.06, respectively, sign test; also better than condition 1, Exper-
iment 2b, P = 0.06). This configuration is reminiscent of some
used in studies of pure tone streaming (18). In this condition, the
repetition of the distractor may compete with that of the mixture.

Experiment 3b: Spectrotemporal Structure and Irregular Presen-
tation. To test whether listeners extracted the temporal structure
of sounds in addition to their spectral content, inExperiment 3bwe
presented variable mixtures but used a time-reversed version of
the target sound for the incorrect probe (that thus had the same
power spectrum as the target but differed in temporal structure).
As shown in Fig. 3B, performance remained high when dis-
tinguishing between the correct and the time-reversed probes,
although there was a slight advantage with our standard incorrect
probes [F(2,18) = 4.03, P = 0.04]. Listeners thus derived a spec-
trotemporal profile for the target sound and did notmerely encode
the average spectrum of the mixture sequence. Performance also
remained high when the targets were presented at irregular tem-
poral intervals (Fig. 3B), indicating that periodically occurring
acoustic structure was not necessary for the effect (P < 0.0001 for
both conditions, two-tailed t test).

Experiment 4: Temporal Integration. If the benefit of multiple mix-
tures on sound segregation reflects the extraction of repeating
structure from the auditory input, it should be constrained by the
short-term storage capacity of the auditory system; to recognize
that a structure repeats, the input must be stored over the repeti-
tion time. We examined the effect of target spacing on subjects’
ability to extract the target from a mixture sequence, holding the
number of target presentations fixed at six but varying how fre-
quently the targets occurred (Fig. 4). Performance was unaffected
by short delays but declined steadily thereafter [F(4,24) = 22.98,
P < 0.0001]. The results are consistent with an integration process

that tracks acoustic structure using an auditory memory buffer,
although they leave open the question of whether time delays or
the intervening acoustic input are driving the effect. Either way, it
appears that when the storage capacity of the integration process is
exceeded, repetition becomes difficult to track.

Computational Schemes for Extracting Embedded Repetition. It is
easy to envision simple computational schemes in which the
structure of a repeating source could be extracted from mixtures.
As a proof of concept, Fig. 5 illustrates one such approach.A target
estimate is initialized to the first segment of the mixture sequence
and over time is refined through an averaging process that is time-
locked to peaks in the cross-correlation of the target estimate and
the spectrogram (SI Methods). The correlation peaks reveal the
delay at which the signal contains the target, and the averaging
(taking the pointwiseminimumof the previous target estimate and
the current spectrogram segment) combines information across
mixtures. Although the estimation process is constrained by the
averaging window (SI Methods), it does not require knowledge of
the target duration, repetition pattern, or other characteristics.
Fig. 5 shows a spectrogram of a sequence of mixtures of

a target sound with various others (A), followed by spectrograms
of a sequence of target estimates derived for this mixture se-
quence (B), graphs showing the cross-correlation between each
successive target estimate and the next 700-ms block of the
spectrogram (C), and a spectrogram of the true target (D). The
correlation peaks occur at the onset of the target in the mixture,
and the estimation process converges on the true target after
several iterations (see also SI Results, Experiment 6).

Discussion
The recovery of individual sound sources from mixtures of multi-
ple sounds is a central challengeof hearing.Our results suggest one
solution: a sound source can be recovered if it occurs more than
once and is not always mixed with the same other sounds. This is
true even in cases where other grouping cues are impoverished to
the point that a single instance of the source is unsegmentable. The
auditory system evidently detects repeating spectro-temporal
structure embedded in mixtures, and interprets this structure as
a sound source. Repetition of sound sources is not explicit in the
input to the ear, because the source waveform is generally cor-
rupted at each presentation by other sounds. Source repetition can
nonetheless be detected by integrating information over time.
Listeners in our experiments were able to form detailed impres-
sions of sound sources that they only ever heard in mixtures, and
thus were able to recover this latent structure.
Source repetition can be viewed as another acoustic grouping

cue, but it is distinct from other cues in one important respect—
its use does not require prior knowledge of sound characteristics.
Other grouping cues are rooted in particular properties of natural
sounds, be they statistical regularities that hold for broad sets of
sounds (e.g., the “bottom-up” cues of common onset or harmon-
icity) or attributes specific to individual sounds or sound classes
(e.g., the “top-down” cues of speech acoustics). Such properties
serve as cues because they characterize the particular sorts of
sounds found in the world. Knowledge of these sound properties
thus must first be internalized by the auditory system from the
environment, either over the course of evolution or by learning
during an organism’s development. Repetition, in contrast, re-
quires only the assumption that sound sources maintain some
consistency over time. Our finding that repetition alone can support
segregation suggests that it can bootstrap the auditory system in
situations where characteristics of sound sources are not yet known,
be it early in development or in unfamiliar auditory environments.
The practical utility of this phenomenon for sound segregation

obviously depends on the presence of repeating sounds. Not all
sounds occur repetitively, but repetition is nonetheless common
to natural auditory environments. Examples include the sounds
of rhythmic motor behaviors (e.g., walking, running, scratching,
clapping) and repetitive physical processes (e.g., branches
swaying, water trickling). It is also striking that many animal
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vocalizations consist of repetitions of a single call (19), and as
such would benefit from repetition-based segregation. Although
the targets in our experiments repeated exactly, we found in-
formally that moderate variation in the exemplars had little
effect on the ability to hear the target repeating. This is not
surprising from a computational standpoint; if the repeating
sounds produce a peak in the correlation function, as they will
when their variation is not excessive, then an algorithm like that
of Fig. 5 will recover their central tendency. “Fingerprinting”
techniques for detecting repeating patterns (20) are an alterna-
tive model for repetition detection, and these are particularly
tolerant of variability. It thus seems likely that source repetition
could play an important role in everyday hearing.
The effect of repetition can be viewed as an extension of

Bregman’s “old-plus-new” idea (1), whereby frequencies added to
a spectrum are segregated from those that are continuously
present. Our effects involve continuity only at an abstract level,
because our stimuli had dynamic spectra and were often separated
by short gaps (Figs. 3 and 4). Our results thus implicate a mecha-
nism that can extract dynamic spectrotemporal structure (e.g., as
in Fig. 5) distinct from the spectral subtraction mechanisms often
posited (1). The upshot of this is that repetition can drive the
segregation of complex, quasi-realistic sounds from mixtures.
The effects described in this paper are examples of “streaming”

(1, 18, 21, 22), in that the repeating targets segregate from the dis-
tractors over time. Perhaps because we presented temporally
overlapping sounds, our effects differ in some respects from the
well-known case of alternating tones that segregate when repeated.
We found that sounds segregated only when one of the sounds
varied, not when both were repeated. Our findings bear a closer
resemblance to the classic finding that repeating tones are easier to
detect when accompanying masker tones vary from one presen-
tation to the next (23–25). Those effects are conceptually similar to
ours, but the acoustics are considerably different, as are the con-
ditions under which the effects hold. For instance, the tone effects
depend on spectral separation between the target tone and the
masker, perhaps relying on spectral separation as a bottom-up

segregation cue, and are adversely affected by even brief gaps be-
tween tones (25). These differences from our phenomena raise the
possibility of distinct mechanisms; the tone effects seem closely re-
lated to Bregman’s old-plus-new phenomena, and could have
a similar explanation. There is also some conceptual similarity be-
tween our results and demonstrations that infants and adults can
learn repeating patterns in streams of phonemes (26). This latter
case seems likely to represent a distinct phenomenon, given that the
patterns are acquired over longer time scales and usually are not
consciously accessible.
Our studyhighlights theexperimental use of generativemodelsof

sound. Studies of the cocktail party problem have traditionally used
unnatural synthetic stimuli (9, 27, 28) or familiar real-world sounds
such as speech (3, 10, 12, 29). Generative models have the advan-
tage of producing novel stimuli that lack the confounding effects of
familiarity but that share properties of natural sounds. The statistics
captured by ourmodel are but a small subset of those characterizing
the full distributionofnatural sounds, but theynonethelesshave two
important consequences. First, stimuli with naturalistic modulation
are sparse in the time-frequency domain, and thus they do not
uniformly mask one another (8). Detection of repetition likely
requires some degree of sparsity in the sensory input, because
otherwise there would be little to gain from hearing sounds in
multiple mixtures; most sounds would mask one another over most
of their extent. Second, natural statistics allowed the generation of
many stimuli that did not all sound the same. Presumably because
the auditory system is tuned to the properties of natural sounds (30–
33), in this case spectro-temporal modulation (34), naturalistic
stimuli are better discriminated than unnatural stimuli (35). Dif-
ferent samples of white noise, for instance, soundmuch less distinct
than do different samples from ourmodel, which likely wouldmake
the task of discriminating targets prohibitively difficult.
Consistent with these notions, pilot experiments with alterna-

tive correlation functions indicated that the phenomena do not
depend sensitively on their exact shape, but that large deviations
from natural correlations do render the stimuli less discriminable
and less sparse, to the point that the task becomes impossible. For
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instance, we found that the task could not be performed when the
stimuli were different samples of white noise. Although repetition
of individual samples of white noise is sometimes noticeable (36,
37), their perceptual similarity and spectrotemporal uniformity
apparently precludes thiswhen samples are embedded inmixtures.
It thus was important to use a naturalistic soundmodel. Sparsity is
likely crucial to the phenomenon, and the discriminability of nat-
ural stimuli facilitated the experimental task.
The utility of source repetition could extend to vision and ol-

faction, which also confront scene analysis problems. Organisms
receivemultiple overlapping objects or odors as sensory input, and
repetitionmight enable the recovery of individual objects or odors
without prior knowledge of their characteristics. The problems are
not analogous in all of their details (e.g., odors are not defined by
their temporal structure, and visual objects do not combine line-
arly when forming an image, due to occlusion; ref. 7), but the same
general principle may apply: a particular mixture of sources
(objects or odors) is unlikely to occur repeatedly, such that re-
peating patterns in the input are diagnostic of single sources.
Repeating patterns should induce input correlations that could
guide temporal integration and reveal single objects or odors, just
as we found with sound.
The cocktail party problem has been believed to be solved via

the combination of grouping cues derived from statistical regu-
larities of natural sounds, and knowledge of specific sounds or
sound classes. Using a simple generative model to produce novel
sounds, we found that sound source repetition provides a third
source of information with which to parse sound mixtures, one
that the auditory system can use even when other segregation cues
are unavailable, and which could perhaps be used to learn other
grouping cues. The auditory system seems attuned to repetition,
and can use it to succeed in conditions that would otherwise be
insurmountable.

Materials and Methods
Sound analysis and synthesis used spectrograms specifying the logarithm of
the rms amplitude in a set of time-frequency windows. Spectrograms were
generated by first passing a signal through an auditory filter bank, then
passing each filter output through a set of time windows. The rms level of the
windowed signal yielded the value of a spectrogram cell. Adjacent filters and
time windows overlapped by 50%.

Correlations between pairs of spectrogram cells were measured for the initial
500-ms segment of each natural sound. These correlations were averaged across
pairs of cellswith the sametimeor frequencyoffset to yield temporal and spectral
correlation functions for each stimulus set, as displayed in Fig. 1 C and D.

Synthetic stimuli with similar correlations were created by modeling the
spectrogram as a multivariate Gaussian variable, specified by a mean spec-
trogram, and a covariance matrix containing the covariance between every
pair of spectrogram cells. The mean of each spectrogram cell was set pro-
portional to the corresponding filter bandwidth. The covariance matrix was
generated from exponentially decaying correlation functions that approxi-
mated the shape of correlation functions for natural sounds. For each pair of
cells, the covariance was the product of the corresponding temporal and
spectral correlations and a constant variance.

To generate sounds, a time-frequency decomposition was generated for
a sample of white noise. The signal in each window was scaled to set its log-
amplitude to that of the corresponding cell in a spectrogram sampled from our
generatingdistribution.Theresultswerepassedthroughthefilterbankagain(as
in otheranalysis and synthesis decompositions; ref. 38) and summedtogenerate
a sound signal. Because adjacent filters and timewindows overlapped and thus
interfered with each other when amplitudes were altered, the spectrogram of
the resulting sound generally differed from the sampled spectrogram from
which the sound was generated. However, these differences were subtle, and
the intended correlation structure remained present in the sounds, as can be
seen in the correlations measured in the synthetic sounds (Fig. 1 C and D).

Methods are described in more detail in SI Methods.
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SI Results
Experiments 2c and 2d. Our method required using probe sounds
that were distinct from the target half of the time. In the single-
mixture conditions of Experiments 1, 2a, and 2b, these “incorrect”
probes were constrained to be physically consistent with the
mixture; they could be no higher in level than the mixture at any
point in the spectrogram. In the multiple-mixture conditions, the
probes were constrained to be physically consistent with one of
the mixtures in the sequence, selected at random. In principle,
subjects might have been basing their performance in the mul-
tiple-mixture conditions not on perceiving the segregated target
sound, but rather by noticing when the probes were physically
inconsistent with some of the mixtures on such trials (e.g., by
noting that the probe contained frequencies that some of the
mixtures did not).
To help exclude this possibility, we repeated Experiments 2a

and 2b using incorrect probes that were constrained only to be
acoustically similar to the targets. Incorrect probes were gener-
ated by fixing a time slice (1/8 of the sound’s duration) to be equal
to the targets, drawing conditional samples (SI Materials and
Methods), and keeping only those samples whose spectrogram,
expressed in dB (relative to the maximum time-frequency cell)
and clipped at –40 dB, had a correlation coefficient of 0.8–0.9
with that of the target sound. Thus, the incorrect probes were no
less physically consistent with the single-mixture conditions on
average than with the multiple-mixture conditions; in both cases,
they could have more energy than the mixtures at certain spec-
trogram locations. If noticing these inconsistencies was the basis
for the subjects’ performance, then the single- and multiple-
mixture conditions should produce similar results.
We also used distractor sounds that were customized for each

target, such that each distractor masked part of the target accord-
ing to at least one of the criteria used for the distractors in Ex-
periment 6. This was done to rule out the possibility that some of
the mixtures might sound sufficiently similar to the target such
that subjects could merely match the probe sound to individual
mixtures. In all other respects, the methods were similar to those
used in Experiments 2a and 2b. Eight of the original 10 subjects
participated.
As shown in Fig. S1, we obtained similar results using this al-

ternative method. Performance again improved with the number
of different mixtures heard, indicating that subjects were not
simply noticing properties of individual mixtures relative to the
probe sound. As in Experiments 2a and 2b, we found amain effect
of the number of different mixtures [F(4,28) = 15.0, P < 0.0001],
but no effect of experiment type [F(1,7) = 0.22, P = 0.65] and no
interaction [F(4,28) = 0.95, P = 0.45]. The main difference be-
tween the results of Experiments 2a and 2b and Experiments 2c
and 2d was the the latter experiments’ better performance in the
single-mixture conditions. This difference indicates that listeners
can achieve greater-than-chance performance with single mix-
tures by monitoring something akin to physical consistency (e.g.,
whether the probe sound contains frequencies that the mixture
does not), but that the benefit of multiple mixtures exceeds this
small effect.

Experiment 5: Temporal Jitter. If mixture variability is indeed the
key to recovering a sound source, then it should be possible to
enhance performance for a single repeated mixture by varying the
time offset between target and distractor. We ran an experiment
with the one-, two-, and 10-mixture conditions of Experiment 2b,
with the distractor sounds either synchronous with the target

sounds (as in Experiment 2b) or jittered randomly in time by up to
120 ms in either direction. As shown in Fig. S2, varying the timing
of the distractors relative to the targets improved performance for
the one-mixture [t(9) = 5.34, P < 0.0001] and two-mixture con-
ditions [t(9) = 3.09, P = 0.01], but not for the 10-mixture condi-
tion [t(9) = 0.87, P = 0.4, paired t test]. This difference produced
an interaction between synchrony and mixture number [F(2,8) =
28.26, P < 0.0001]; there were also significant main effects of both
factors, as is apparent from the results graph. Temporal variability
thus aids segregation when the sounds in the mixtures do not
themselves vary much, but is not of benefit otherwise.

Experiment 6: Grouping Ambiguities vs. Energetic Masking. Many
studies have considered sound segregation to be hindered by two
distinct factors, commonly termed“energetic”and“informational”
masking (1–10).Given that exposure to a sound inmultiple distinct
mixtures apparently can help an observer overcome both factors,
we explored whether this was the case for human listeners.
When multiple sound sources each have energy at approxi-

mately the same point in frequency and time, they “energetically”
mask each other. The sound higher in energy dominates, and the
energy of the other sources at that point is not physically evident
(Fig. S3A, second row, far right, green-labeled cells). However,
even if a target sound is not energetically masked, the presence
of another sound source can impair its identification. A mixture
of sounds contains acoustic energy scattered over frequency and
time, some parts of which belong together and some of which do
not (Fig. S3A, second row, far right; red-labeled cells belong to
the distractor rather than to the target). If this energy is im-
properly grouped, then the target will be misheard. This effect
has come to be known as “informational” masking, because the
source of the impairment is not physical spectro-temporal
overlap, but rather an ambiguity of grouping (1–10).
Hearing a target sound mixed successively with different dis-

tractor sounds could help overcome both types of masking,
(energetic masking because features that are physically obscured
in one mixture are unlikely to be obscured in the next, and in-
formational masking because the features belonging to a partic-
ular sound will tend to occur repeatedly in a fixed configuration,
signaling that they belong together). By tracking feature config-
urations over time, the auditory system could build up a repre-
sentation of the sound that is robust to both factors. The
computational scheme outlined in Fig. 5 provides one example of
how this might occur. The distractors occasionally obscure fea-
tures of the target (energetically masking it). The distractors also
tend to have energy in places where the target does not, and in
a single mixture it is unclear how the energy should be grouped.
The time-locked averaging mechanism proposed in the main text
averages out both effects.
To test whether listeners can use multiple mixtures in this way,

we first generated a set of customized distractor sounds for each
target sound, each of which both energetically and non-
energetically masked the target to a significant extent. We did this
by generating many potential distractors and selecting those that
had energy in some of the places where the target cell did not and
also that exceeded the target sound in amplitude in some of the
places where its energy was above a threshold value (SI Methods).
We then isolated the energetic and nonenergetic components of
masking by thresholding the distractor stimuli in the time-fre-
quency domain (11). To eliminate nonenergetic masking, we set
the distractors to 0 at spectrogram locations in which the target
sound had minimal energy (< −40 dB for the maximum level
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across cells). The resulting sounds had energy only in places
where the target did, and as such could only energetically mask
the target (Fig. S3A, third row). To minimize energetic masking
but preserve nonenergetic masking, we made the complimentary
manipulation, setting the distractors for each target sound to
0 in places where the target was above the threshold and the
distractor was sufficiently high to have a chance of masking it
(SI Methods; Fig. S3A).
We measured subjects’ ability to perceive the target in se-

quences of mixtures with these three types of distractors. As
shown in Fig. S3B, for all three distractor types, subjects re-
mained close to chance after hearing a repeating single mixture,
but were far above chance when presented with multiple dif-
ferent mixtures, producing a main effect of mixture variability
[F(1,7) = 137.49, P < 0.0001] and no interaction with distractor
type [F(2,14) = 1.95, P = 0.18]. These results indicate that both
energetic and informational masking contribute to the difficulty
of segmenting our sound mixtures, but that hearing a sound
multiple times in distinct mixtures can ameliorate both factors.
This finding is consistent with the computational scheme out-
lined in the main text, which overcomes energetic and in-
formational masking with the same simple averaging mechanism.

SI Materials and Methods
Subjects. Ten subjects (four females; average age, 26 ± 4 y)
participated. All had pure-tone thresholds of 20 dB hearing level
or less at octave frequencies between 250 and 8,000 Hz, and
none reported any history of hearing disorders. The same sub-
jects were used throughout, but in Experiments 2b, 2c, 3a, 3b,
and 6, only 8 of the 10 subjects were available, and in Experiment
4, only 7 of the 10 subjects were available.

Sound Analysis and Synthesis. A set of 39 filters equally spaced on
an ERBN scale (12) spanning 20–4,000 Hz, with half-cosine
frequency responses was used for sound analysis and synthesis.
The time windows were raised cosines, 20 ms in width.
Because we wanted to synthesize sounds with the properties of

individual natural sound sources rather than mixtures of sources,
it was important to analyze recordings of isolated sounds. Spec-
trogram correlations were measured for 350 English words
spoken by two speakers, one male and one female, and 30 animal
vocalizations taken from sound effects CDs. Each sound clip was
edited to remove any silence at the beginning and end. Corre-
lations between pairs of spectrogram cells at either the same
frequency or the same time point were measured for the initial
500-ms segment of each natural sound. These correlations were
then averaged across pairs of cells with the same offset, yielding
temporal correlation functions at each frequency and spectral
correlation functions at each time point. The shape of these
correlation functions was fairly consistent across frequency and
time, as in previous reports (13), so we averaged them to yield
single temporal and spectral correlation functions for each
stimulus set, as displayed in Fig. 1 C and D. There were some
differences in these functions across the sets of sounds, but all
were clearly distinct from the correlations of white noise (Fig. 1
C and D). We found qualitatively similar correlation functions
with alternative sets of sounds, such as excerpts of sentences, or
sounds made by inanimate objects (e.g., impact sounds) – cor-
relations generally fell slowly and smoothly with increasing time
or frequency offsets, although the rate of decay varied depending
on the specific sound set analyzed.
The correlation functions used to generate the covariance

matrix of our generating distribution had decay constants of
−0.075 per filter and −0.065 per time window. We imposed
separable correlations in time and frequency; although there are
some deviations from this in natural sound sets (14), these are
slight. The mean of each spectrogram cell in the generating
distribution was set such that the stimuli would have a flat

spectrum on average. This deviated from the average spectra of
natural sounds, but it ensured that the high frequencies were
audible and not easily masked by simultaneous low frequencies.
Onset and offset ramps (10-ms half-Hanning windows) were
applied to all synthetic sounds.

Generation of Incorrect Probes. In half of the trials, the probe was
different from the target. Our challenge was to generate these
“incorrect” probes such that performance would depend pri-
marily on sound segregation rather than on other factors. Simply
using another sample from our generating distribution proved to
be inadequate, because such a sound often had more energy at
some time-frequency location than the mixture of the target and
a distractor, and could be judged on this basis. We found it
necessary to choose incorrect probes that were both statistically
comparable to the target sounds and physically consistent with
the mixture in question.
We adopted the following procedure. At a randomly selected

time slice (equal to 1/8 of the sound’s duration, or 4 of 32 time
windows), the incorrect probe was set equal to the mixture (be-
cause the target was typically equal to the mixture in some places;
see Fig. 1 for an example). A conditional sample was then drawn
from the Gaussian generating distribution (15) to yield a new
sound with the covariance structure of the target sounds. This
sample was then set equal to the mixture at all points in the
spectrogram where it exceeded the mixture level, to ensure that
the incorrect probe was physically consistent with themixture. The
resulting spectrogram was then rejected if it differed from the
mixture by less than an average of 7 dB, to ensure that the incorrect
probe was not more similar to the mixture than was the target.

Procedural Details. Sounds were played out by a LynxStudio
Lynx22 24-bit D/A converter at a sampling rate of 48 kHz, and
were presented diotically over Sennheiser HD580 headphones at
a sound pressure level of 72 dB. Incorrect probes were scaled by
the same factor as the corresponding target so as to remain
physically consistent with the mixture.
Subjects were instructed to use all four responses approxi-

mately equally often. In all experiments, subjects completed two
blocks containing 20 trials per condition.
From pilot versions of the experiments, it became apparent that

hearing the target sound was essentially impossible in conditions
with a single mixture. To help maintain motivation, feedback was
given in only 75% of all trials in all conditions. Pilot versions that
eliminated feedback on all trials or provided it on all trials yielded
similar results, so this choice appears to not have been critical.

Trial Structure. Each trial was initiated by pressing a key. In Ex-
periment 1, subjects were presented with a mixture followed by
a probe sound (conditions 1 and 2), a probe sound followed by
a mixture (conditions 3 and 4), a target sound followed by a probe
sound (condition 5), or a mixture followed by another mixture
(condition 6). In conditions 1–4, the task was to judge whether the
probe sound was one of the sounds in the mixture. In conditions 5
and 6, the task was to judge whether the two sounds were the same
or different. In Experiments 2–6, subjects were presented with
mixture(s) followed by a probe sound. The task was to judge
whether the probe sound was one of the sounds in the mixture(s).

Experiment Structure. In Experiments 1 and 2a, trials for a con-
dition were grouped together because stimulus timing and/or
tasks differed across condition; conditions were completed in
opposite order in the two blocks, to reduce order effects. In all
other experiments, trials were ordered randomly. In Experiment
3a, conditions 1 and 2 were run in separate sessions from con-
ditions 3, 4, and 5. Subjects began by completing a full-length
practice session (20 trials per condition) of Experiment 1. Before
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starting Experiment 2a, subjects also completed a full-length
practice session of that experiment.

Experiment 3b: Time-Reversed Targets. Condition 2 used time-re-
versed versions of the target as the incorrect probes; the task was
as in the other experiments. To make this task feasible, we used
target sounds that were selected to be asymmetric in time; those
included had to have spectrograms with a correlation of <0.2 with
their time reversal. We also used these sounds in conditions 1
and 3 of this experiment. Incorrect probes for conditions 1 and 3
were generated as in the other experiments.

Experiment 6: Energetic and Informational Masking. Target sounds
were generated by the same process as used in the other
experiments, but were rejected if 75% of the cells were not within
40 dB of the maximum spectrogram cell. This was done to fa-
cilitate the generation of distractor sounds that energetically
masked the targets. Distractor sounds were generated separately
for each target and were selected to produce a criterion amount of
masking. To be included as a distractor, a sound had to produce
a mixture that met the following two conditions in at least 25% of
the spectrogram cells: (i) the mixture exceeded the target by at
least 5 dB and the target was no more than 40 dB below the
maximum level across the windows of that target, and (ii) the
mixture was no more than 40 dB below its maximum level and
the target was at least 40 dB below its maximum level. The first
condition produced distractors that energetically masked the
target. The second condition produced distractors that “in-
formationally” masked the target, because they contained energy
where the target did not. These distractors were then thresh-
olded in the time-frequency domain as described in the text.
Incorrect probes were generated for each type of distractor using
the procedure described above.
The criteria for zeroing a cell in the distractors that minimized

energetic masking were that the target energy be no more than
40 dB below its maximum and that the distractor energy be no
more than 10 dB below that of the target. These criteria of
physical overlap neglect masking over time and between adjacent
frequency bins, and thus the resulting distractors surely produced
some residual energetic masking. However, they generated far
less of it than did the unthresholded distractors, while preserving
nonenergetic masking of the target.

Target Estimation Model. The spectrogram of the acoustic input
(the mixture sequence) was divided into 700-ms blocks, with 50%
overlap between adjacent blocks. The target was estimated with
the following series of steps:

(i) The target estimate was initialized to the first block.
(ii) The cross-correlation of the target estimate with the cur-

rent block was computed for different time delays.
(iii) A peak-picking algorithm (http://billauer.co.il/peakdet.

html, with the delta parameter set to 0.05) was used to
identify the first large peak in the correlation func-
tion (which should indicate the position of the next target
occurrence).

(iv) The target estimate was updated with the current spec-
trogram block. The updating process involved taking the
pointwise minimum of the target estimate and the cur-

rent spectrogram block, with the spectrogram block time-
shifted by the delay of the peak. The minimum was used
because mixing two sounds generally serves to increase
the spectrogram energy over that present in either sound
alone, such that the target sound is likely to never be more
than the minimum of two mixtures containing it (16).

(v) Steps ii–iv were repeated with the next block of the spec-
trogram.

The block size and overlap constrain the duration of the targets
that can be detected. Specifically, to produce a peak in the cross-
correlation function, a target must fall within the block. To ensure
that targets are not “missed,” the amount by which blocks overlap
must exceed the target length, so that if a target falls on the
boundary of a block, then the next block is guaranteed to contain
it. In our simulations, we chose the block size to roughly match
the analysis window suggested by the results of Experiment 4. We
arbitrarily set the overlap to 50%, to ensure detection of the
300-ms experimental stimuli. The overlap could be easily ex-
tended to permit the detection of longer-duration targets.
The algorithm is reasonably robust. Targets that overlap the

block boundary are not erroneously averaged, because they do not
produce a correlation peak; the peak-picking algorithm detects
only peaks with lower values on either side. The algorithm uses
only the first peak in the correlation function for a block, such that
if multiple examples of the target fall within an analysis block, only
the first one triggers the averaging process, and the rest are left for
the next block. If a particular target exemplar falls within two
successive blocks, there is no effect of it being counted twice,
because the pointwise minimum operation does not change the
target estimate in this case.
Nonetheless, the scheme is clearly oversimplified. For instance,

listeners can sometimes extract a target source from mixtures in
the presence of other repeating sounds (e.g., Experiment 3a,
condition 3), indicating that multiple templates may be used si-
multaneously. The algorithm that we implemented also does not
address what should be done in the event that a peak is not
detected in an analysis block, as when the target spacing exceeds
the block length, conditions under which human perception
suffers (Experiment 4).Moreover, the algorithm works only to the
extent that the correlation peaks identified correspond to the
target position in the signal. If a peak corresponding to something
other than the target onset is chosen (as can sometimes occur if
random variation in the sound structure produces a peak), then
errors can be introduced in the target estimate. Some of these
errors simply reflect suboptimal peak-picking. It is likely that the
brain has more robust algorithms than we do, and we would not
expect our model to match the performance of human listeners.
However, it is also notable that human subjects do not perform at
ceiling in our task, and that targets are easier to hear in some
mixture sequences than in others. It would be interesting to ex-
plore whether any of this variability could be explained by vari-
ation in the model’s performance due to the clarity of correlation
peaks in different mixture sequences. That said, the model is
intended mainly as a proof of concept that latent repeating
structure could be extracted with a relatively simple, bottom-up
mechanism. We make no claims that it is near optimal, or that it
can match human performance.
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Fig. S1. Results and stimulus configurations for Experiments 2c and 2d. Schematics for conditions with 5 and 10 mixtures are omitted. (A) Different numbers of
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Fig. S3. Source repetition and masking (Experiment 6). (A) (Upper) Spectrogram showing an example target sound. (Lower) Three versions of an example
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(red) cells labeled (Right). (B) Results of Experiment 6. Each distractor type was featured in repeating and variable distractor conditions.

McDermott et al. www.pnas.org/cgi/content/short/1004765108 5 of 5

www.pnas.org/cgi/content/short/1004765108

